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Abstract— Viscoplastic material behavior could influence the inelastic collapse and buckling loads
of shell structures due to the strain rate dependence of the tlow stress and through pre-buckling
creep deformations and inclastic unloading. An examination of these effects s performed by
incorporating the unified clastic -viscoplastic constitutive equations ot Bodner- Parton into the
BOSOR-S computer program of Bushnell for the deformation and buckling of axisymmetric
shells subjected to both pressure and thermal loadings. The combined computer program enables
considerition of both time-dependent geometrical and material ¢ffects on the pre-buckled state and
the instability condition. [n particular, the procedure enables the determination of a bifurcation-
type lower bound on the buckling load. A Tew numerical excercises were performed to illustrate the
various effects, including that of temperature dependence of the viscoplastic properties.

INTRODUCTION

The time dependence of inelastic deformation, manifested by creep, stress relaxation and
strain rate sensitivity of the plastic flow stress, s an essential material property which could
have i number ol direet effects on plastic buckling problems :

(1) pre-buckling creep deformations influence the geometry and the associated stress
and strain state so as, in general, to weaken and destabilize the system ;

(2) the corresponding strain rate dependence of the flow stress causes the collapse
(maximum) load to depend on the loading rate and also influences the bifurcation
condition;

(3) inclastic strains would be developed during unloading which could efTect the pre-
buckled state.

For a structure under constant or slowly increasing loading, creep deformations would
generally magnify both the initial imperfections and the load-induced deformations thereby
altering the geometry of the system, The geometrical changes could destabilize the system
by increasing the moments of the external forces in the case of columns, plates and shells, and
by modifying the basic configuration of shallow arches and spherical caps. In conventional
formulations, time-dependent creep response is assumed to be non-associated with time-
independent elastic -plastic behavior except as the creep deformations influence the geo-
metrical state. As a consequence, clastic buckling could be induced by geometry changes
duce to creep, ¢.g. Hofl (1968, 1975), Obrecht (1977), Stordkers (1977) and Hayman (1981).
The clastic buckling modes could be due to bifurcation from the original pre-buckled shape.
In the inelastic range, the material stiffness would decrcase due to plastic strains developed
by the increased bending moments. With the conventional procedure, these plastic strains
arc obtained from a time-independent inclastic analysis based on the current (time-depen-
dent) geometry of the system. This general approach to inclastic buckling problems in the
prescnce of creep deformations is well represented in the literature, e.g. Bushnell (1974).

Apart from the more obvious effect of creep deformations on destabilization, the strain
rate dependence of the flow stress influences possible buckling conditions, i.e. collapse or
bifurcation, in a complicated manner. In the pre-buckled state, longer times of loading
would gencerally correspond to lower strain rates and would thereby reduce the effective
material stiffness in the inelastic range. The collapse condition determined by a maximum
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of the load deflection relation would therefore be a function of loading rate. or time, for a
structure of viscoplastic material. e.g. Tvergaard (1983).

For the bifurcution condition. the role of strain rate sensitivity of the flow stress is
more complex. Rabotnov and Shesterikov (1957) (referred to as R-S). Gerard and Papirno
(1962). Gerurd (1962) and Trojnacki and Zyczkowski (1976). among others, treated creep
buckling us a bifurcation problem by proposing a load- and ume-dependent degradation
of material stiffness. The investigation of R-S was extensively discussed by Hoft (1938).
and by Jahsman and Ficld (1962a.b). who suggested alterations in the reference equation
of state. e.g. consideration of elastic unloading and the creep hesitation effects upon
reduction of load. Many commentators on the problem at that time (in the 1960s and
1970s) pointed to the mmadequacies of the currently available equations of state for the
matertal response under the required conditions. Another evaluation of the R -S approach
by Yamamoto (1970) criticized the use of a dynamic stability criterion for creep buckling
of columns. More recently, Tvergaard (1989). as well as other investigators, have shown
that Hill's (rate-independent) biturcation criterion can be satistied for a gencral elastic-
viscoplastic structure only at the elastic buckling load. This comes about since the incre-
mental response of a viscoplastic material to an instantancous change of strain rate is
clastic. The result is, of course, singular and practically unrealistic since imperfections and
inertial cffects would nallify the assumption of an instantancous strain rate change. An
alternative approach is to establish the cffective tangent modulus of the material for the
existing stran rates in the pre-buckled deformation state and to use a suitably integrated
(over the structure) tangent modulus in the conventional buckling criterion. With an
appropriate constitutive theory, the tangent modulus at cach point in the structure could
be obtiained as the coctlicient in an expression for the meremental stress strain relation at
the current state condition which would be compatible with Hill's bifurcation condition.
The resulting bifurcation-type buckling load could then be anterpreted as a lower bound on
the actual buckling condition since higher strain rates would be realized at the inttiation of
the buckling process. Further discussion of this aspect of the buckling problent will be the
subject of a subsequent paper. The present one is primarily concerned with describing the
coupling of the elastic viscoplastic theory of Bodner Partom (referred to as B P) to the
BOSOR-5 program and the presentation of some numerical results for the buckling of
cyvlindrical shell structures subjected to both external pressure and o temperature gradient
through the shell wall. The B P formulation enables direct consideration of the temperature
dependence of the viscoplastic properties within the BOSOR-S program.

ELASTIC VISCOPLASTIC CONSTITUTIVE EQUATIONS

In recent years, more readistic constitutive cuqations have been proposed for the
combined clastic and time-dependent inelastic deformation of metals. One class of such
equations is referred to as “unified™ in the sense that all inelastic deformations are rep-
resented by the same variable. As a consequence, strain rate-dependent plastic flow, creep
and stress relaxation are consequences of particular loading conditions tor the same set of
governing cquations. These equations also include load history-dependent variables to
represent certain aspects of the material state, e.g. hardening. Some of the proposed scts
of unificd™ constitutive equations do not require i prescribed  yield criterion and
loading/unloading conditions. The particular constitutive equations of Bodner and Partom
(1972, 1973) tor clastic viscoplastic response are of this class and are adopted in the present
paper. These were initially proposed in 1968, and their current version was reviewed by
Bodner (1985, 1987). These constitutive equittions have been shown to realistically represent
material response characteristics over a wide range of loading and temperature conditions,
c.g. Chan er ol (1988, 1989, 1990). The applications demonstrate the representational and
predictive capability of the equations with respect to the strain rate dependence of the flow
stress, creep under steady and varying loads, stress relaxation under uniaxial and multiaxial
loading conditions, and uniaxial and multiaxial cyclic behavior.

Use of such constitutive equations in buckling problems enables simultancous con-
sideration of bath time-dependent geometrical and material effects and provides an overall
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Table |. A summary of the elastic -viscoplastic constitutive model

Decomposition of strain rate:
§, = &+ (h
Flow luw:
B =is,. =0 (2)
with s, =a,—(1 30,0,

Kinetic equation

, VAR
D" = D; expl:— (;‘}—)] (3

with DS = (120568 J.o = {1 s, 5,

AT =DV, (4

Z=2'+7" (5)
Evolution equations of internal cariables :

(«) Isotropic hurdening

7'-7.In
Z':nl,[Z,—leu'r—,«l'zl[_?,_:] (6)
@

with Z') = 7,0 W, = ol = aul: W(0) =0

(b) Directional hardening
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/f,, = m (7, «/f”)l"“ -A;Z,[(I“I“) J r, (7)
/Z,
where u, = ”,,/(”U"u)‘ .‘- r, = /‘A/.“/(,‘U/‘Ll)l :
and 2V =B, 2P0y =0, B =0 (8)

Material constants .

Dy 2y Z, 2 Zunimy A, Ay ey, ey, and elastic constants ; with n = n(7) (in
most cases one can set Zy = Z, A, = A, r, =r,)

framework for the treatment of problems involving variable loading histories such as
uniform loading rates, steady loading (creep buckling), impulsive loading and repeated
loading. Combined thermal and mechanical loading conditions could also be considered
within such a formulation which can include temperature dependence of the viscoplastic
properties.

The B-P elastic-viscoplastic equations are given in a slightly specialized form in Table
1. In the decomposition of the total strain rate into elastic and inelastic components, eqn
(1). it is noted that both components are generally non-zero for all conditions of loading
and unloading. This mcans that plastic strains, although very small, are present at low
stress levels and upon unloading. The proposed flow law, eqn (2), is that associated with
the von Miscs yield criterion although yicld and normality conditions are not required by
the material model. That law is then a relation between the direction of the physical plastic
strain rate and the deviatoric stress. By means of the kinctic eqn (3), which relates the
invariants of plastic strain rate D8 and deviatoric stress J5, the coefficient of the flow law 4
can be determined from eqn (4) as a function of stress and the load history-dependent
hardening variable Z. That variable could be interpreted as a measure of the resistance to
plastic flow.

Another term appearing in the kinetic equation is the coefficient D, which corresponds
to the limiting plastic strain rate in shear. This interpretation is inherent in the functional
form of eqn (3). and an assumed value for D, can be used which is less than the presumed
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physical one. The other parameter is n which controls strain rate sensitivity and the overall
level of the flow stress: it is temperature- and pressure-dependent with n, in general, varying
inversely with temperature and directly with superimposed hydrostatic pressure. Lower
values of n correspond to increased strain rate sensitivity and reduced levels of the flow stress.

The earlier tormulation of the constitutive equations (Bodner and Partom, 1973)
considered only i1sotropic hardening but both isotropic and directional hardening effects
are contained in the more recent version (Bodner. 1985, 1987). In the B-P equations, the
total scalar hardening variable Z is considered to be composed of isotropic and directional
components Z' and Z° respectively. eqn (5). Evolution equations for those quantities are
of saturation torm. eqns (6) and (7). and include terms corresponding to thermal recovery
of hardening which enable the condition of secondary creep to develop. The material
constants assoctated with thermal recovery of hardening are Z,, 4,. A.. r, and r,. Direc-
tional hardening is actually represented as a second-order tensor, ff,,. and its evolution eqn
(7) is also tensorial. A scalar effective value. Z°, is taken to be the component of 8, in the
direction of the current stress, eqn (8). and is added to the isotropic hardening Z*' to make
up the total hardening variable Z.

Directional hardening etfects could enter into buckling problems due to the activation
of stress components upon buckling that are zero in the pre-buckled state. Those effects,
however, would be small in the applications under discussion. Inclusion of directional
hardening is. nevertheless, desirable since the ability of the equations to properly model
actual matertal behavior is considerably improved. The equations in Table 1 do not include
the possible additional hardening effects due to extended non-proportional loading histories
(Bodner, 1987), which are gencerally not significant in buckling problems,

SUMMARY OF THE BOSOR-S PROGRAM

The BOSOR-S computer program of Bushnell (1973, 1974, 1976a,b, 1983) determines the
clustic plastic stresses and deformations ol shells of revolution subjected to axisymmetrical
loading, and also the load condition for plastic collapse or for bifurcation buckling. 1tis a
tinite dilference program that uses the principle of virtual work to establish the equilibrium
conditions where the nodal point movements serve as the virtual displacements. Since
rotational symmetry is assumed prior to buckling, only the circumferential and meridional
pre-buckling stress components are non-zero in the pre-buckled stute. Also. only axially
symmetrical initial imperfections can be included. Hooke's Law is taken for the elastic
stress-strain relation and thermal, strain rate-independent plastic and time-dependent creep
strains are included. The basic equilibrium equations are integrated throughout the shell
thickness and over the shell surface to give a set of non-lincar algebraic equations. These
are solved numerically by the Newton-Raphson method which involves satistuction of an
iteration equation for the increments of the nodal point values; see eqn (3) of Bushnell
(1974).

For inelastic material behavior, time-independent incremental and deformation plas-
ticity theories have been incorporated within the basic BOSOR-S program. To provide a
basis for generalization to rate-dependent plasticity, the J, incremental plasticity theory
with isotropic hardening was chosen as the reference. The tangent modulus procedure is
used in the program which involves the determination of a plastic loading matrix and a
tangent stiffness matrix which relates increments of stress and strain. In the standard
method. the tangent stiliness matrix is independent of the creep and thermal strains. This
meuns that those strains would have no direct influence on the plastic response but would
be expected to effect it indirectly through the changes in the geometry of the structure.

Plastic collapse (instability) of the shell in the axisymmetrical mode would be indicated
by failure of the procedure to converge at some level of applied pressure. For bifurcation
buckling in a symmetrical or non-symmetrical mode, a standard bifurcation analysis based
on an integrated tangent modulus is adopted. Since the pre-buckled state is asixymmetric,
only bifurcation buckling is possible for a non-symmetrical mode. The possible mode
patterns would generally involve shear strains, which would require consideration of
additional degrees of freedom in the nodal displacements. Bifurcation buckling would be

&
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indicated by a determinant obtained from the variation of the equilibrium conditions
becoming zero. In practice, the determinant is evaluated at each load step and the load step
at which the determinant change sign gives the range in which buckling would take place.
A detailed discussion of the buckling analysis appears in Bushnell (1974).

INCLUSION OF THE B-P ELASTIC-VISCOPLASTIC EQUATIONS
IN THE BOSOR-5 PROGRAM

Within the context of the J. incremental plasticity formulation of the BOSOR-5
computer program. the use of the B-P constitutive model requires modification of a number
of the basic equations and of the numerical procedure for handling the essential time
dependence. An important change is that plasticity and creep are not uncoupled in the
unified B-P theory and are represented by the same variable. A single inelastic strain term
therefore appears instead of the sum of the uncoupled plastic and creep strains in the
expression for the strain energy of the shell elements. Similarly, the expression for the
inelastic strain in terms of the total and thermal strains includes both plasticity and creep,
and depends on the nodal deformations.

Because of the inherent time dependence and the coupling of plasticity and creep, it is
necessary to recognize that the inelastic tangent modulus, EF. which appears in the BOSOR-
5 formulation. cannot be deduced from the response characteristics. That is, Ef should be
a property of the material state (Z) and the applied stress, while the time-dependent inelastic
response and the changes in stress depend upon the prevailing loading conditions. In
practice, this means that £§ should be obtained at cach time increment from the reference
constitutive equations for the current values of stress and hardness (Z) and not from the
derived increments of stress and inelastic strain. This may be part of the reason for the
difliculties experienced by the creep buckling theories of RS and of Gerard in which the
respective material stiffnesses are obtained from the response characteristics. The problem
does notarise for the uncoupled plasticity -creep formulations in which creep only influences
the structural geometry while £7 is directly reluted to the ratio of the increments of stress
and rate-independent plastic strain,

For the B -P constitutive theory, Table 1, it is possible to obtain an explicit expression
for the short time inelastic tangent modulus of the pre-buckled state directly from the
equations which is then used in the equilibrium equations and in the determinant for
bifurcation buckling. As discussed previously, this bifurcation buckling value should be a
lower bound on the actual buckling condition, since higher strain rates would be realized
during the buckling process. Taking gy = \/3.11, the kinetic eqn (3) can be expressed as

o.r/Z = function of (DY/Dj) = f(D4/Dg) &)

where D% is the sccond invariant of the plastic strain rate in the pre-buckled state. The
inelastic tangent modulus corresponding to an increment of effective inelastic strain, defy,
with the plastic strain rate held steady, would then be

_dogr _dZ (DY D}). 1o

TP T P
defy Lo

L}

It is noted that eqn (10) would reduce to the standard tangent modulus in the limit of a
rate-independent solid. The term (dZ/degr) can be obtained from the evolution egns (6) and
(7). Table 1, neglecting thermal recovery terms for the short time behavior. Multiplying
eqn (6) by (dr/dely) and eqn (7) by u,(d¢/defr) and adding, leads to

EY = [m\(Z,~Z")+my(Z,~ Z")|o f(DY D). Y

This expression gives the inelastic tangent modulus of the pre-buckied state in terms of the
current state quantities Z', Z¥ and the current inelastic strain rate invariant D% which is
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assumed to be steady at the condition of obtaining £7. Alternatively. using eqn (9), £} can
be expressed in terms of the current stress and the state quantities,

EY =mi(Z,—-ZY+m(Z,=Z°oux/(Z'+2Z°)). (12)

This equation was used for the term H’ in the BOSOR-3 program which appears in the
plastic loading matrix [C]: see eqn (6) of Bushnell (1974). That matrix occurs in the terms
that arise in the iteration procedure for satisfying the equilibrium equations and also in
the determinant for the bifurcation condition. The short time plastic tangent modulus
therefore has a direct influence on the bifurcation condition and a minor effect on the
determination of the pre-buckled state. It is noted that although egn (12) does not involve
the thermal recovery terms, those terms do influence EF through the current values of the
hardening variables Z' and Z° which are based on the full eqns (6) and (7). Identification of
the pre-buckled state requires satisfaction of the complete set of equilibrium and constitutive
equations and the boundary conditions for the given problem.

For the numerical solution of the governing elastic-viscoplastic material equations at
each increment of time, it is convenient to use the implicit numerical scheme developed by
Kanchi ¢r al. (1978). The B-P model can be used directly to obtain analytical expressions
between the increments of inelastic strain rate and stress. Also. as discussed above, the
plastic loading matrix [C] is obtained from the relation between the inelastic strain and
stress increments and from the expression for the stress increment in terms of the elastic
strain increment. [t is noted that with the B-P model. [C'] is influenced by both plasticity
and creep and is always non-zero. Alternatively, in the classical yield surface plasticity
formulation, [C] 1s zero at stress levels below yield and upon unloading. The complete
system ol equations is solved at cach time increment in the basic BOSOR-3 computer
program. Dctatls of the procedure arc given by Naveh (1987).

In the BOSOR-5 program, the stability of equilibrium is examined at cach time
increment by evaluation of a determinant based on the second variation of the total energy.
tor the inherently non-conservative system, this corresponds to examining the condition for
neutrality ol the equitibrium state from the viewpoint of virtual work. In this investigation of
possible bifurcation of the equilibrium state, non-symmetrical modes are also considered,
Le. additional degrees of freedom are introduced, The inclastic tangent modulus obtained
analytically from the B P equations for the current material state, eqn (12), is used as the
material stiffness parameter in the resulting stability determinant. The total tangent modulus
which relates the increment of stress to the increment of total strain can be readily obtained
in terms of £} and the clastic modulus £.

NUMERICAL EXAMPLES

A number of numerical exercises had been carried out with an earlier version of the
moditicd BOSOR-5 program by Bodner and Naveh (1988) to examine the effect of material
rate sensitivity on the buckling of stiffened cylindrical shells hydrostatically loaded at a
controlled rate. In that study, the plastic tangent modulus EY was evaluated from the
response characteristics which overemphasized the influence of material rute sensitivity on
the material stiffness for short time structural deformations. However, the numerical results
obtained for the relatively rate-insensitive aluminum alloy 7075-T6 agreed well with cor-
responding test results. Also, various numerical results obtained with the aluminum alloy
material were in agreement with those of the original rate-independent plasticity formu-
lation, which used a reference stress-strain curve corresponding to the viscoplastic response
at the average developed strain rate. On that basis, the details of the numerical procedure
and the programming arc considered to be correct.

The program was subsequently further modified with £F evaluated according to the
equations given in this paper and this revised program was the basis of the further numerical
exercises. The revised program was also generalized to consider thermal strains which are
included in the original BOSOR-S formulation. To expand the treatment of thermal effects,
the full evolution equations for the hardening variables with the thermal recovery terms,
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egns (6) and (7). were incorporated into the revised program. This enabies the condition
of secondary creep to develop under constant load conditions. A further generalization was
to permit the rate-dependent inelastic properties to be functions of temperature.

For the numerical exercises based on the current version of the computer program,
the reference structure was taken to be a closed cylindrical shell subjected to exernal
hydrostatic pressure and a linear temperature gradient through the wall thickness that was
uniform over the cylindrical surface. The aluminum alloy 7075-T6 defined by the B—-P model
in the 1988 paper was taken as the shell matenal. The dimensions of the shell and the B-P
material constants are indicated in the Appendix along with an initial set of boundary
conditions (set I) which permits uniform radial motion to avoid bending in the pre-buckled
state. A series of exercises was undertaken to validate the program. one of which was to
check whether a linear temperature gradient through the thickness would have any influence
on the elastic buckling pressure. As expected. the numerical results indicated no effect of a
linear temperature gradient on the elastic buckling load obtained by setting the yield stress
to a high value. In the inelastic range, however, a lincar temperature gradient through the
shell wall does influence the buckling pressure due to the reduced stiffness of some of the
material. In the particular exercise that was performed, a linear temperature gradient of
112 C reduced the buckling pressure by [3%. In that example. buckling was due to
bifurcation in a non-symmetrical mode with six circumferential waves.

Further generalization of the modified computer program involved inclusion of the
hardening evolution equations in incremental form with terms corresponding to thermal
recovery of hardening. eqns (6) and (7). Thermal dependence of the inelastic plastic flow
propertics can be considered by taking some of the material constants to be functions of
temperature. Recent exercises in modeling materials at various temperatures have shown
that the parameter nis primarily responsible for temperature effects such as the changes in
flow stress and level and in strain rate sensitivity. [n general, it is expected that n would
decrease with temperature and would thereby lower the flow stress level and inerease strain
rate sensitivity, An empirical form ol the temperature dependence of noused in previous
studies s

n=(A/TY+ 8. (13

A series of numerical exercises was conducted in which both thermal recovery of
hardening and temperature dependence of n were included. The basic problem for exam-
ination was that of the reference shell subjected to a linear temperature gradient through
the thickness of 100 C which was uniform over the surface, and to a hydrostatic pressure.
The boundary conditions for this problem are given by set [ in the Appendix which
corresponds to clamped ends. The value of # = § for the aluminum alloy material was tuken
to apply at 0 C and other choices of n were assumed to apply at 100 C. Values of A and B
were then set to provide the necessary transition, and reasonable values for the thermal
recovery constants were chosen, Since the dimensions of the reference gecometry and the
material constants were arbitrarily chosen, the absolute buckling values are unimportant
and only relative percentage changes for ditferent conditions are of interest. Taking the case
of n to be temperature-independent as the reference, so that # would also equal § at 100 C,
it was found that with n = 3 at 100 C, the buckling pressure reduced by 12% uand with
n =1 at 100 C, the buckling pressure reduced by 31 %. Again, buckling in all cases was by
non-symmetrical bifurcation with six circumferential waves. Temperature dependence of
the inclastic material properties could therefore be a significant factor in buckling problems
involving thermal effects.

Itis noted that the original BOSOR-5 program is not arranged to consider temperature
dependence of the clastic modulus or of the inclastic properties. This limitation can be
overcome, at least for the inclastic properties, by the use of a suitable temperature-dependent
viscoplastic material model.

Another exercise was to examine the effect of loading rate on the buckling pressure for
a rate-sensitive material using the equation for EY given in this paper. The same reference
shell structure of the Appendix was used and the material was artificial with a rate sensitivity
like titanium, # = 1, but with higher values of the hardening constants (see Appendix). The
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boundary conditions corresponded to set I which apply for fully clamped ends and are
more realistic. Thermal effects were not considered in this exercise. For pressure loading at
a rate corresponding to an average strain rate of 10 s ', the computed buckling value
{by bifurcation) is taken to be unity for reference. In comparison. the fully elustic buckling
pressure for this geometry is 1.09. At a lower loading rate corresponding to an average
strain rate of 10~ °s ', the inelastic buckling load (also by bifurcation) attained. using the
present formulation, is 0.96. In comparison. the earlier formulation based on obtaining £Y
from the response results led to an appreciably larger percentage decrease in buckling
pressure at the lower loading rate which appeared to overemphasize the effect of visco-
plasticity. For that exericse. the material model was based on actual titanium with »# = |
and lower values of the hardening parameters. Also, the reference structure for that exercise
was different than in the present case. The fairly small 4% reduction in buckling load due
to the three decade change in loading rate obtained in the present case may be due, in part.
to the inelastic buckling pressure being close to the fully elastic condition for this particular
example.

CONCLUSIONS

The B-P elastic-viscoplastic constitutive equations have been implemented into the
BOSOR-5 computer program of Bushnelt for the deformation and buckling of axi-
symmetrical shells subjected to both mechanical and thermal loading. The constitutive
theory is considered to be “unificd™ in the sense that plasticity and creep are inherently
coupled and are represented by the same variable. Thermal recovery effects and thermal
dependence of the inclastic propertics are included in the formulation.

As part of the mplementation, an analyticad expression for the inclastic tangent
modulus in the pre-buckled stiate was obtained directly from the constitutive theory. Use
of this modulus in the buckling determinant (bifurcation criterion) leads to a lower bound
on the instability load of structures of stram rate-dependent material,

Particular advantages of using & “unified” elastic viscoplastic constitutive theory in a
structural computer progran are:

(1) the rate sensitivity of inelastic stratning can be taken into account directly at cach
point in the structure; the rate sensitivity influences the structural response and
the buckling and collupse loads ;

(2) possible creep of the structure in the pre-buckled state is inherently included ;

(3) thermal effects, namely : thermal strains, recovery of hardening, and temperature
dependence of inelastic properties, can be accounted for at each point in the
structure.

A number of numerical exercises were performed to examine the response of eylindrical
shells of elastic~viscoplastic materials subjected to combined thermomechanical loading.
With the implemented viscoplastic theory, overall computer running times were generally
less than those of the original program (with rate-independent plasticity) for the exercises
that were performed. In some cases, the running time for the viscoplustic formulation was
about half that for the basic program. This seems to be due to the fairly direct procedure
that has been introduced in the modified program compared to the need to continu-
ally satisfy the current yield eriterion and loading unloading conditions in the original
formulation.
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APPENDIN
(1) Reference geometry for munerical exercises
¢
P
’%/95 ! !x.u’<- w dw
g T ‘B B=3
,: y.v W \ x
- : 1=2.54¢m
N 1
P |
U SR
|
| d'c
i inner —
] , R jgz—— t=2.54cm
T
L=63.5cm temperature gradient
through thickness

SAS 27:15-E
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(2) Boundary conditions for numerical exercises :

Atends.x = +L.2

At centerline, x =0
(symmetry condition)

set | pre-buckling:for buckling
u free free
v fixed fixed
w free free
I fixed fixed
set 11 pre-buckling for buckling
u free free
3 fixed free
w fixed. fixed
I fixed fixed

pre-buckling tor buckling
fixed fixed
free free
free free

fixed fixed

pre-buckling for buckhing

fixed fixed
free free
free free
fixed fixed

(3) Material constants : aluminum alloy 7075-T6

clastic:
E =744 GPa
=013

coetlicient of thermal expansion :

x=24x10 " C!

viscoplastic (B P):

D, = 10*s ' (assumed)
n= 5.0

Z., = /' = 682 MPa
/7, = 86Y M
7, = 90 MPa
m, = 0.087 (MPa) !
my o= 323 (M !
A, 2 d,y=02s "
ry ry=1

} (arbitrarily chosen)

(4) Material constants © artificial “titaniun alloy”

elastic
E =118 GPa
r=0.3

viscoplastic (B P):

D, = 10%s " (assumed)
n=1.0

5320 MPu

Z, = 6532 MPa

7, = 1496 MPa

0.089 (MPa)

my = 280 (MPa) '

__:\]
it

=
[]



